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Abstract—Hate speech classification has been a long-standing
problem in natural language processing. However, even though
there are numerous hate speech detection methods, they usually
overlook a lot of hateful statements due to them being implicit
in nature. Developing datasets to aid in the task of implicit hate
speech classification comes with its own challenges; difficulties
are nuances in language, varying definitions of what constitutes
hate speech, and the labor-intensive process of annotating such
data. This had led to a scarcity of data available to train and test
such systems, which gives rise to high variance problems when
parameter-heavy transformer-based models are used to address
the problem. In this paper, we explore various optimization and
regularization techniques and develop a novel RoBERTa-based
model that achieves state-of-the-art performance.

Index Terms—hate speech detection, natural language process-
ing, transformers

I. INTRODUCTION

In the current era of growing online communication, hate
speech is prevalent. Sometimes, this hate speech may be
implicit in nature, i.e. it may not contain expletives or explicit
language. In such cases, the hate is delivered through sarcasm
[1], humor [2], or some other literary device [3]. This makes
it a difficult task to detect such hate speech since most models
are trained on datasets that focus specifically on expletives [4],
explicit phrases [5] or racial epithets [6]. Implicit hate speech
detection is hence a more challenging and nuanced problem,
and there has been a lot of progress in recent years in this
domain [7] [8] . The reason implicit hate speech detection is
challenging is that there is no clear definition for what does
and does not constitute hate speech [9]. Furthermore, detecting
hateful intent is difficult because of nuances in the language,
the context of the conversation, and the tone of speech. Finally,
data sources for implicit hate speech detection are scarce,
and so modern natural language processing methods such
as transformers (BERT, RoBERTa, GPT etc) tend to heavily
overfit the dataset. This results in a severe high variance
problem, which makes the implicit hate speech detection task
even more challenging.

Our approach has been mainly aimed at reducing the effects
of high variance during training.

• We experimented with layer-wise learning rate decay [10]
in order to preserve the low-level features of the pre-
trained model and better fine-tune the high-level features.

• We replaced dropout with mixout regularization in our
model as it has proven to be a more efficient regulariza-
tion method for pretrained language models [11].

• We experimented with the weights of the last few layers
of the language model, including weight reinitialization
[12] as well as concatenation and averaging the weights
[13] before passing the embeddings onto the classification
head.

We have presented a comparative study of the application
of these methods to reduce variance and have developed a
novel model that achieved state-of-the-art performance in the
implicit hate detection task introduced in [14].

II. RELATED WORK

Hate speech detection has been an active area of research
in natural language processing for a long time. However, it
is only recently that the field of implicit hate detection has
been given the attention it deserves. Data scarcity has been a
significant problem in this field but [14] has curated a high
quality human annotated dataset from public Twitter data.
This dataset contains three stages. The first stage deals with
a coarse grained binary classification problem. The second
stage provides more details for the Tweets tagged as hateful
in the first stage. This stage introduces six-way fine grained
labels providing valuable information on the type of hate being
peddled through the post. The third stage of the dataset also
deals with implicitly hateful Tweets and provides information
on the group being targeted by the hate speech and what
the actual implied statement is. The paper also provides a
benchmark for the task utilizing both support vector machines
as well as transformer-based encoders such as BERT. We are
concerned with the first two stages only as the third stage is
not a classification problem.

III. IMPLICIT HATE CLASSIFICATION

In this section, we review the structure of the problem we
are trying to solve, the discriminative fine tuning strategies
that helped us design a novel transformer based model as well
as the architecture of the model itself.



A. Task and Data Description

1) Stage 1: Binary Classification: The first stage of the
implicit hate corpus introduced in [14] contains 19,112 natural
language utterances, out of which 933 are labelled as ”explicit
hate”, 4,909 are labelled as ”implicit hate” and 13,291 are
labelled as ”not hate”. However, the task assigned to this
stage by the authors is that of binary classification between
the ”implicit hate” and ”not hate” classes. The dataset is
skewed towards the ”not hate” class which is an accurate
representation of the data distribution in real life. Hence, in
order to address the skewness in the data we have used a
weighted Cross Entropy Loss function.

ln = −
C∑

c=1

wclog
exp(xn,c)∑C
i=1 exp(xn,i)

yn,c (1)

where x is the input, y is the target, w is the weight, C is the
number of classes.

2) Stage 2: Fine Grained Classification: This stage further
annotates the 4,909 natural language utterances that were
previously tagged as ”implicit hate” in Stage 1. The utterances
are further grouped into six categories, namely: Grievance,
Incitement, Inferiority, Irony, Stereotypical and Threatening.
Upon further human annotation it was found out that certain
utterances which was previously tagged as ”implicit hate” ac-
tually belong to the ”not hate” category. After removal of these
noisy samples an extreme class imbalance was introduced in
this stage, which is why the authors expanded the dataset to
6,343 Tweets using bootstrapping and out-of-domain samples
so that classifier performance is not severely hampered. That is
why we have used an unweighted Cross Entropy Loss function
for this stage as the corpus skewness is already dealt with.
The equation is the same as Equation 1 but lacks the weight
parameter.

B. Model Architecture

Transformer based encoder models have been shown to
outperform linear support vector machines [15] and RNN
based models [16] in hate detection tasks. Therefore we have
decided to use RoBERTa [17] as our encoder. RoBERTa
was pretrained on a much larger corpus compared to BERT
and uses dynamic masking during language modelling. It has
outperformed BERT in several NLP related tasks which serves
as our motivation to choose it instead of BERT.

RoBERTa expects tokenized input sequences marked with a
few special tokens to signify the start and end of each sequence
and it outputs context aware embeddings for these sequences.

These embeddings are then fed into a multi-layer perceptron
network with two hidden layers each containing 100 neurons
with the hyperbolic tangent activation function between them.
We have tried to match our model architecture with that of
[14] as much as possible in order to remove architecture based
advantages that may mislead the inference of the conducted
experiments.

Learning Rate = lr Group Learning Rate
Group 1 lr / 2.6
Group 2 lr
Group 3 lr * 2.6
Classification Head lr * 10

TABLE I
GROUP WISE LEARNING RATES

C. Fine Tuning Strategies

1) Layer-wise Learning Rate Decay: RoBERTa consists
of 12 transformer block layers, each generating their own
embeddings and capturing different semantic aspects of the
input sequence. The earlier layers extract low level features
and the later layers build up on that knowledge. Thus, it was
proposed in [18] that different layers should be fine tuned
till different extents. Using the same learning rate throughout
the model risks a drastic change of the low level features
that the pretrained language model was. This could lead to
overfitting of a particular training set as the model learns to
extract features relevant only to that training set and loses its
generalization.

We have created three different setups for experimentation.
In the first, we use the same learning rate and learning
rate decay throughout the entire model, this serves as our
baseline. In the second setup, we create a distinction between
the RoBERTa encoder and the classification head and used
different parameters for both of them. In the third setup, we
create disctinctions within the RoBERTa encoder as well and
create the four groups as stated in Table I. The grouping was
done as follows: group 1 consisted of the embeddings, and
layers 0-3 of the model, group 2 consisted of layers 4-7 and
group 3 consisted of layers 8-11.

2) Mixout Regularization: RoBERTa mainly uses weight
decay and dropout regularization. In [11], the authors proposed
a technique called mixout regularization that was proved to be
a more efficient form of regularization for large scale language
models. Mixout regularization mainly replaces dropout and is
applied on the fully connected layers. The idea behind mixout
stems from the observation that setting neuron activations to
0, as is done is dropout, leads to a drastic loss of knowl-
edge. Hence, mixout randomly selects neurons in a layer and
replaces their parameters with that of the pretrained model.
This helps to preserve the pretrained knowledge of the model
and avoids the optimization from diverging away from the
pretrained model.

3) Re-initialization of Last Layers: The process of fine
tuning a language model is a trade-off between scope of the
model’s domain and its performance. In our case we limit the
model’s domain to mainly that of implicit hate detection but
we gain an improved performance in that domain. Pretrained
language models are highly generalized and hence, some of the
high level features extracted by these models are not relevant
to the domain of interest. Thus, following the general practice
of transfer learning and the experiment proposed in [10], we
re-initialize a few of the topmost layers of RoBERTa.



Model Precision Recall Accuracy F-Score
BERT [14] 72.1 66.0 78.3 68.9
BERT + Aug [14] 67.8 73.2 77.5 70.4
RoBERTa Baseline 65.26 73.19 77.02 69.00
RoBERTa + LLRD(2-Groups) 70.60 70.10 79.35 70.35
RoBERTa + LLRD(4-Groups) 70.32 70.52 79.30 70.42
RoBERTa + LLRD(4-Groups) + Re-init(3) 64.97 77.05 77.46 70.49
RoBERTa + LLRD(4-Groups) + Re-init(3) + Mixout(0.7) 71.17 71.23 70.21 71.20
RoBERTa + LLRD(4-Groups) + Avg Last 4 Layers + Mixout(0.7) 68.11 72.56 78.54 70.26
RoBERTa + LLRD(4-Groups) + Concat Last 4 Layers + Mixout(0.7) 70.14 69.40 78.98 69.77

TABLE II
BINARY CLASSIFICATION OF IMPLICIT HATE DATASET

Model Precision Recall Accuracy F-Score
BERT [14] 59.1 57.9 62.9 58.0
BERT + Aug [14] 58.6 59.1 63.8 58.6
RoBERTa Baseline 64.49 64.43 64.51 64.35
RoBERTa + LLRD(2-Groups) 63.74 64.11 63.95 63.90
RoBERTa + LLRD(4-Groups) 64.79 64.62 64.43 64.68
RoBERTa + LLRD(4-Groups) + Re-init(2) 64.60 64.72 64.35 64.72
RoBERTa + LLRD(4-Groups) + Re-init(2) + Mixout(0.7) 65.90 65.26 65.47 65.58
RoBERTa + LLRD(4-Groups) + Avg Last 4 Layers + Mixout(0.7) 63.46 63.79 63.31 63.16
RoBERTa + LLRD(4-Groups) + Concat Last 4 Layers + Mixout(0.7) 64.81 65.13 64.91 64.90

TABLE III
SIX-WAY FINE GRAINED CLASSIFICATION OF IMPLICIT HATE DATASET

In this case, the number of layers to re-initialize becomes a
hyper parameter and the performance of the model is sensitive
to this value.

4) Using Intermediate Layer Embeddings: Each of the 12
layers in RoBERTa generates its own embeddings that captures
different semantic features of the input sequence. However,
usually only the final layer pooler output is used for further
computation. We have created two experimental setups to
utilize the embeddings generated by the intermediate layers.
In the first, we simply average the last 4 layers’ embeddings
and feed it to the classifcation head, this serves as a skip
connection for the intermediate layer embeddings. In the
second setup, we concatenate the embeddings from the last
4 layers with the motivation of preserving the embeddings of
each individual layer.

Additionally we isolate this experiment from the weights
reinitialization experiment as the intermediate layer embed-
dings only provide useful information if they are pretrained to
some extent.

IV. EXPERIMENTAL SETUP

A 60-20-20 split was used for training, validating and
testing the RoBERTa based model. A linear learning rate
scheduler with 10% of the total training steps as warmup was
used throughout all experiments. Three setups were followed
in the layer-wise learning rate decay experiment. The first
setup consisted of a uniform learning rate and decay for
all layers, the second setup made distinctions between the

RoBERTa model and the classification head and the third setup
consisted of groups within the RoBERTa model. This model
was then trained with a learning rate of {1e-5, 3e-5, 5e-5},
for 3 epochs with a batch size of 8. In the re-initialization
experiment we reinitialized the weights of the last {0, 1, 2, 3}
layers. The weights were reinitialized as per values from the
normal distribution. The bias was reinitialized to zero. Next,
we initialized mixout regularization with a mixout probability
of {0.3, 0.5, 0.7}. Furthermore, the embeddings of the last
four layers were also concatenated and averaged together (in
separate experiments) when the weights were not reinitialized.

V. RESULTS

The results of the stage 1 experiments have been recorded
in Table II and those of stage 2 have been recorded in Table
III. For stage 2, the metrics have been calculated using the
macro averaging method.

In stage 1, the RoBERTa baseline narrowly outperforms the
BERT baseline in terms of F-score. However, upon adding
the discriminative fine tuning and regularization techniques the
performance improves significantly allowing us to create a new
state-of-the-art benchmark with 2.3% absolute improvement.

In stage 2, using RoBERTa instead of BERT already gives
us a substantial boost in performance but as we observed, this
performance can be further improved by using the proposed
techniques. After proper fine tuning of the hyperparameters
we have been able to develop a model that outperforms the
previous benchmark by 6.98% in terms of F-score.



Utilizing the intermediate layer embeddings did have a
slight improvement when compared to the RoBERTa baseline,
however, the re-initialization experiment model outperformed
this one in both stages.

VI. CONCLUSION AND FUTURE WORK

In our work, we have addressed the problem of high
variance while fine-tuning RoBERTa, which is a large scale
language model, on the implicit hate dataset which is relatively
a small corpus. We have explored Layer-wise Learning Rate
Decay as a discriminative fine tuning strategy along with ef-
ficient regularization techniques like Mixout. To better ensure
domain transfer, we also experimented with re-initialization of
few of the last layers of the encoder. Additionally, we sought
to utilize the intermediate layer embeddings of RoBERTa to
obtain a semantically richer contextualized embedding. The
models developed with these techniques have been proven
to have superior performance as compared to the previous
benchmarks.

In future, these techniques can be combined with data
augmentation as both have been proved to result in improved
performance of the models. The reason behind the intermediate
layer embedding models not performing at par with the re-
initialized models can also be further investigated into, along
with comparisons with other regularization and optimization
techniques. There is still a large scope of research in the field
of stabilizing the fine-tuning of large scale language models
in data-scarce environments.
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